C++ POLYMORPHISM

C++ Function Overloading

* As we know that functions are the piece of code that can be used
anywhere in the program with just calling it multiple times to reduce
the complexity of the code.

* In POP, we can use as many functions as per need, however, the names
of the function shouldn’t match.

* In the case of OOP, we can use a function name as many times
following the condition that the number of arguments or the type of
arguments must differ.

* So the method of using the same function name for different functions
is simply called function overloading.

* When an overloaded function is called from main program the function
with matching arguments is invoked.

Examples

void display(); //function with no arguments

void display(int); //function with one integer type arguments

void display(float); //function with one floating point arguments
(

void display(int, float); //function with one floating and one integer type arguments

» void display(float y)

void display() « int main ()

{
intl=4;
float f = 3.0;

__display();
function call display(i): function call

display(f);
void display(int x) e—____ display(i, f); . void display(int x, float y)

return O; 1

!
i

#include <iostream.h> int main()
void display () {
{

Inta = 3;
cout << a << endl; display(5);
}

void display (int a) display(2.3);
{ display(5,4.0);
cout << a << endl; getch();

}
void display (double a) J

{

cout << a<< endl;

}
void display(int a, float b)

{

cout<< a<<", " << b<<endl;

}
o

C++ Function Overriding

* As we know, inheritance is a feature of OOP that allows us to
create derived classes from a base class.

* The derived classes inherit features of the base class.

* Suppose, the same function is defined in both the derived class
and the based class.

* Now if we call this function using the object of the derived
class, the function of the derived class is executed.

* This is known as function overriding in C++.

* The function in derived class overrides the function in base
class.

ziostreams= () {
std: Derived derived1:
derivedl.print():;
Base ;
)1
cout << "Base Functic <z endl:
¥
e
Derived Base {
() 1
cout =< "Derived Function" << endl:
¥ Derived Function

class Base {
public:
vold print() {
// code

}
¥

class Derived : public Base {
public:

volid print() { <«

// code

}
%

int main() {
Derived derivedi;
derivedl.print();

return 0:

